AIXTRON Investor Presentation

Image courtesy of Fraunhofer IISB/Kurt Fuchs

IR Presentation – First Nine Months 2020

RIXTRON

© AIXTRON Investor Relations, October 2020

Forward-Looking Statements

This document may contain forward-looking statements regarding the business, results of operations, financial condition and earnings outlook of AIXTRON. These statements may be identified by words such as "may", "will", "expect", "anticipate", "contemplate", "intend", "plan", "believe", "continue" and "estimate" and variations of such words or similar expressions. These forward-looking statements are based on the current assessments, expectations and assumptions of the executive board of AIXTRON, of which many are beyond control of AIXTRON, based on information available at the date hereof and subject to risks and uncertainties. You should not place undue reliance on these forward-looking statements. Should these risks or uncertainties materialize, or should underlying expectations not occur or assumptions prove incorrect, actual results, performance or achievements of AIXTRON may materially vary from those described explicitly or implicitly in the relevant forward-looking statements. This could result from a variety of factors, such as those discussed by AIXTRON in public reports and statements, including but not limited those reported in the chapter "Risk Report". AIXTRON undertakes no obligation to revise or update any forward-looking statements as a result of new information, future events or otherwise, unless expressly required to do so by law. This document is an English language translation of a document in German language. In case of discrepancies, the German language document shall prevail and shall be the valid version.

Due to rounding, numbers presented throughout this report may not add up precisely to the totals indicated and percentages may not precisely reflect the absolute figures for the same reason.

Our registered trademarks: AIXACT[®], AIXTRON[®], APEVA[®]; Atomic Level SolutionS[®], Close Coupled Showerhead[®], CRIUS[®], EXP[®], EPISON[®], Gas Foil Rotation[®], Optacap[™], OVPD[®], Planetary Reactor[®], PVPD[®], STExS[®], TriJet[®]

Our Vision

Technology. Materials. Performance.

Technology.

We are the **recognized technology leader**

in complex material deposition.

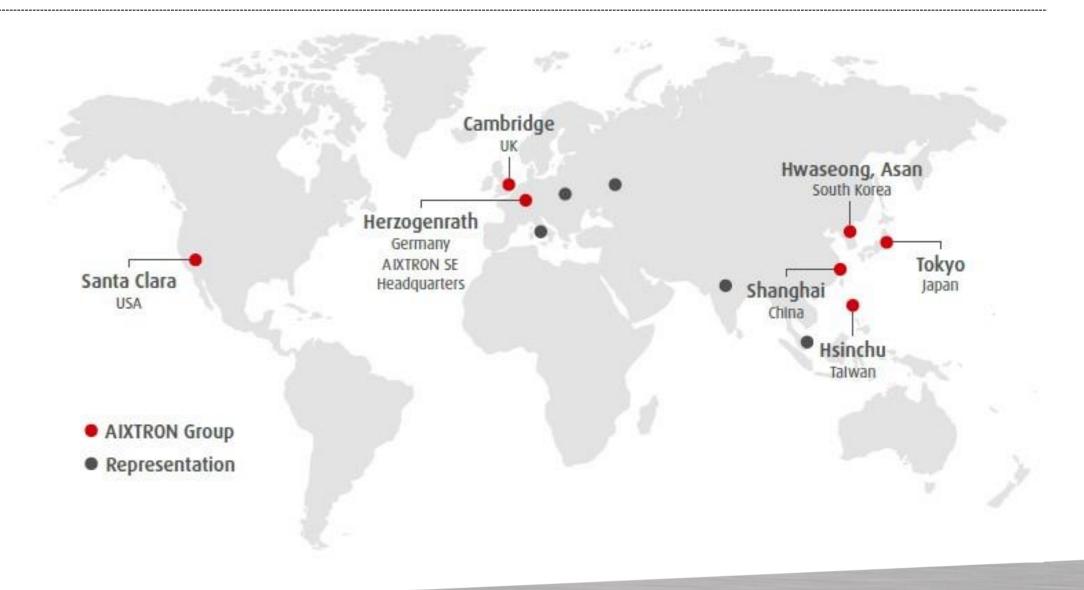
Materials.

We **enable our customers** to successfully shape the markets of the future, exploiting the potential offered by **new materials**.

Performance.

We deliver the performance driving economic success

through our expertise, our employees and the quality of our products.


Who we are

- Headquarters based near Aachen, Germany
- Worldwide presence in 7 countries
- R&D and production facilities in Germany and UK
- ~ 700 employees

- Company founded in 1983, >35 years of experience
- Technology leader in deposition systems
- Over 3,500 deposition systems sold worldwide

Where we are

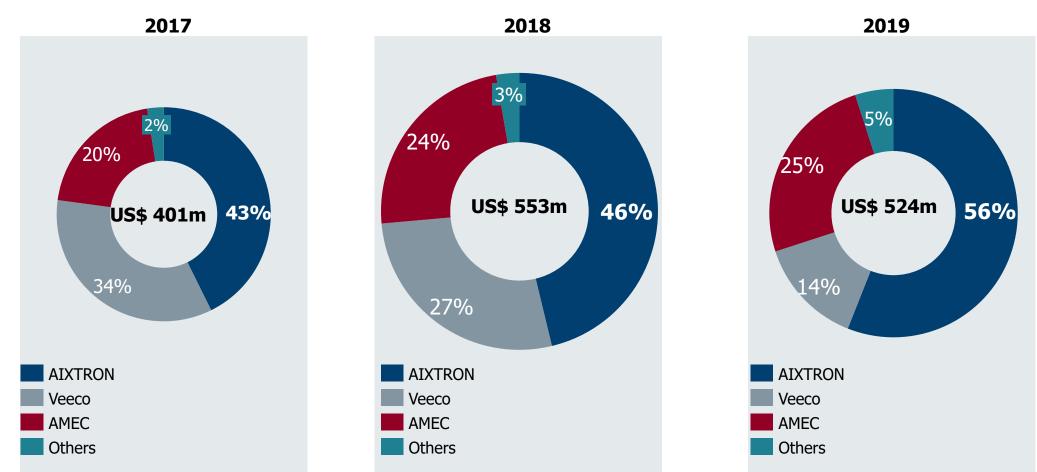
What We Do

We provide enabling Deposition Technologies to the Compound Semiconductor and Display Industry

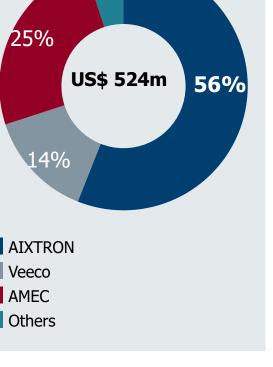
For Optoelectronics and Power Electronics

- Metal-Organic Chemical Vapor Deposition (MOCVD) for the deposition of compound materials to produce for instance Lasers, LEDs, GaN and SiC Power Electronics or other Optoelectronic components
- Plasma-enhanced Chemical Vapor Deposition (PECVD) for the deposition of Carbon Nanostructures and 2D materials (Carbon Nanotubes, Nanowires or Graphene)

For Organic Electronics Applications


 Organic Vapor Phase Deposition (OVPD)* //PEV/ for the deposition of Organic Light Emitting Diodes (OLED) based displays for smartphones to TV

*These thin film deposition technologies are offered by AIXTRON's subsidiary APEVA.

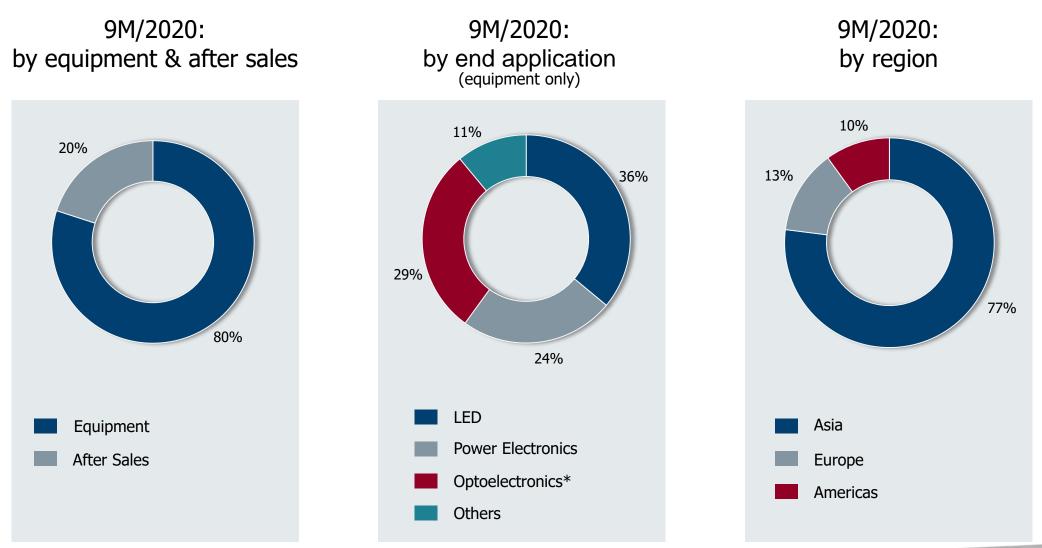


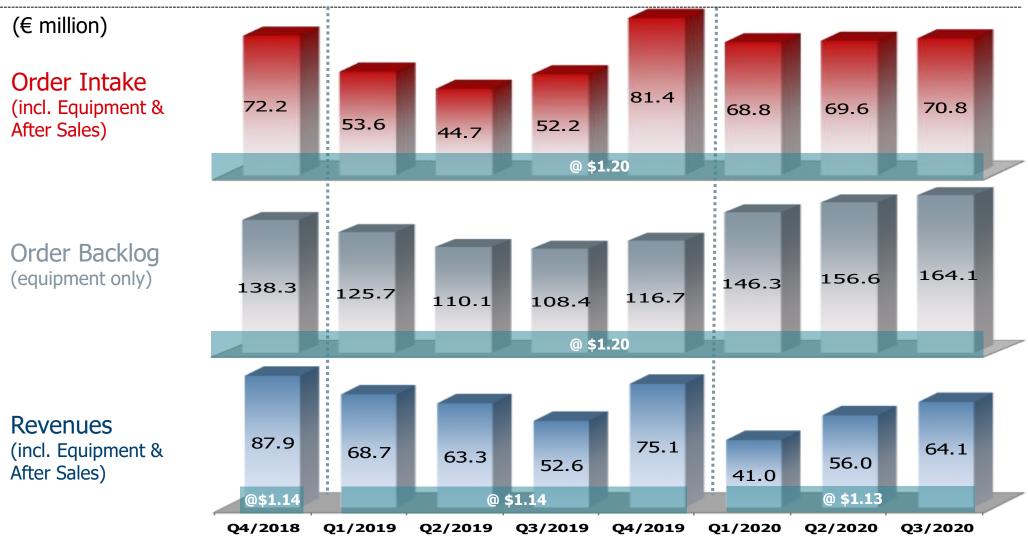
ABOUT AIXTRON

Our MOCVD Market Position

Source: Gartner (2017; 2018), Company reports, AIXTRON estimates

LEDs / Optoelectronics


Technology Portfolio for Complex Material Deposition


Revenue Analysis*

* Rounded figures; may not add up

* Optoelectronics includes applications in Consumer Optoelectronics, Telecom/Datacom and Solar

24 - Month Business Development (Q4/2018 – Q3/2020)

USD revenues were converted at the actual period average FX rate (Q4/2018: \$1.14/€; 2019: \$1.14/€; 9M/2020: \$1.13/€) USD order intake and backlog were recorded at the prevailing budget rate of USD 1.20/EUR

rixtron

Consolidated Income Statement*

* Rounded figures; may not add up

(€ million)	9M/20	9M/19	+/- %	Q3/20	Q2/20	+/- %
Revenues	161.1	184.6	-13	64.1	56.0	14
Cost of Sales	97.9	109.8	-11	38.4	33.2	16
Gross profit	63.3	74.7	-15	25.8	22.9	13
%	39	40	-1 pp	40	41	-1 рр
Selling expenses	7.3	7.1	3	1.9	2.8	-31
General & admin expenses	13.7	12.4	10	4.4	4.6	-4
R&D	41.2	40.0	3	12.6	14.2	-12
Net other operating income	(9.3)	(9.4)	0	(1.2)	(1.9)	-36
EBIT	10.3	24.5	-58	8.2	3.3	>100
%	6	13	-7 pp	13	6	7 pp
Net result	9.6	20.2	-53	7.1	3.3	>100
%	6	11	-5 pp	11	6	5 рр

Financials

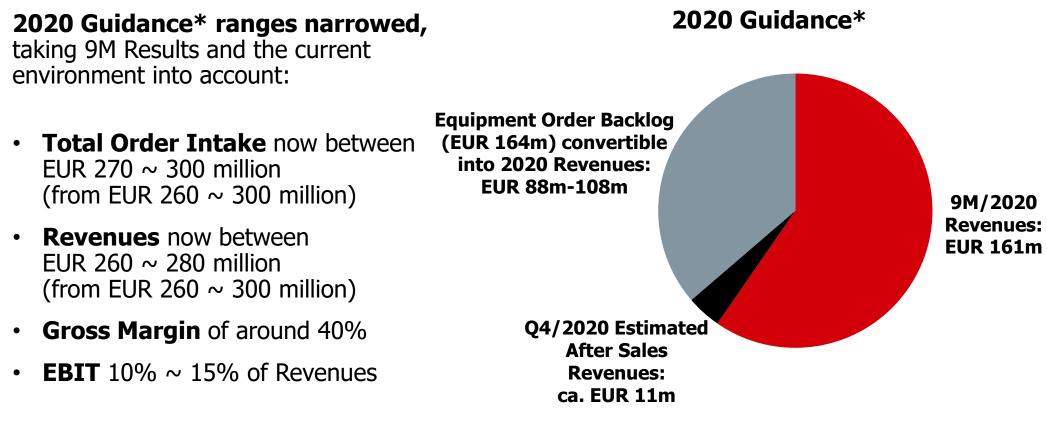
Balance Sheet*

* Rounded figures; may not add up

(€ million)	30/09/20	31/12/19	30/09/19
Property, plant & equipment	66.9	64.5	64.8
Goodwill	71.2	72.4	72.2
Other intangible assets	2.7	2.4	2.2
Non-current financial assets	30.0	0	0
Others	11.8	11.7	12.5
Non-current assets	182.7	151.0	151.8
Inventories	101.6	79.0	87.9
Trade receivables	19.0	29.2	33.2
Others	10.9	5.4	6.5
Cash, financial investments and deposits	262.8	298.3	260.6
Current assets	394.3	412.0	388.2
Equity	471.4	464.1	451.0
Non-current liabilities	4.8	4.5	4.8
Trade payables	14.7	19.4	14.0
Advance payments from customers	63.2	51.1	44.4
Others	22.9	23.9	25.9
Current liabilities	100.8	94.3	84.3
Balance Sheet total	577.0	563.0	540.1

RIXTRON

Consolidated Statement of Cash Flows*


* Rounded figures; may not add up

9M/20	9M/19	Q3/20	Q2/20
9.6	20.2	7.1	3.3
6.1	9.3	3.2	3.0
		<i>(</i> 2 - 2)	
(10.8)	(22.7)	(2.2)	(14.2)
4.9	6.8	8.1	(7.9)
(8.2)	(9.2)	(3.0)	(3.4)
(3.3)	(2.4)	5.0	(11.3)
(1.8)	(0.5)	(0.7)	(0.7)
292.8	260.6	292.8	288.6
	 6.1 (10.8) 4.9 (8.2) (3.3) (1.8) 292.8 	6.1 9.3 (10.8) (22.7) 4.9 6.8 (8.2) (9.2) (3.3) (2.4) (1.8) (0.5)	6.1 9.3 3.2 (10.8) (22.7) (2.2) 4.9 6.8 8.1 (8.2) (9.2) (3.0) (3.3) (2.4) 5.0 (1.8) (0.5) (0.7) 292.8 260.6 292.8

**Excludes changes in financial assets

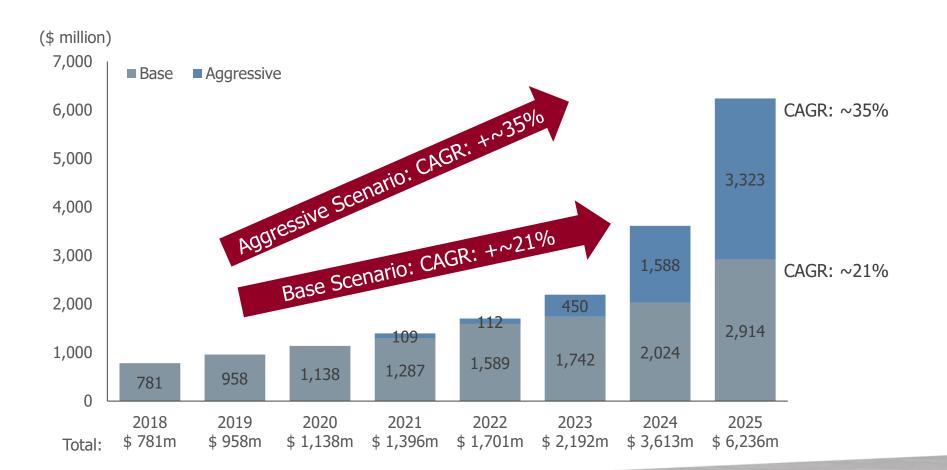
AIXTRON – 2020 Guidance*: Firmed Up

* At 1.20 USD/EUR Budget Rate for the remainder of the year; please refer to "Expected Results of Operations and Financial Position" in the AIXTRON 2019 Annual Report for further information

Market Prospects

Short-Term

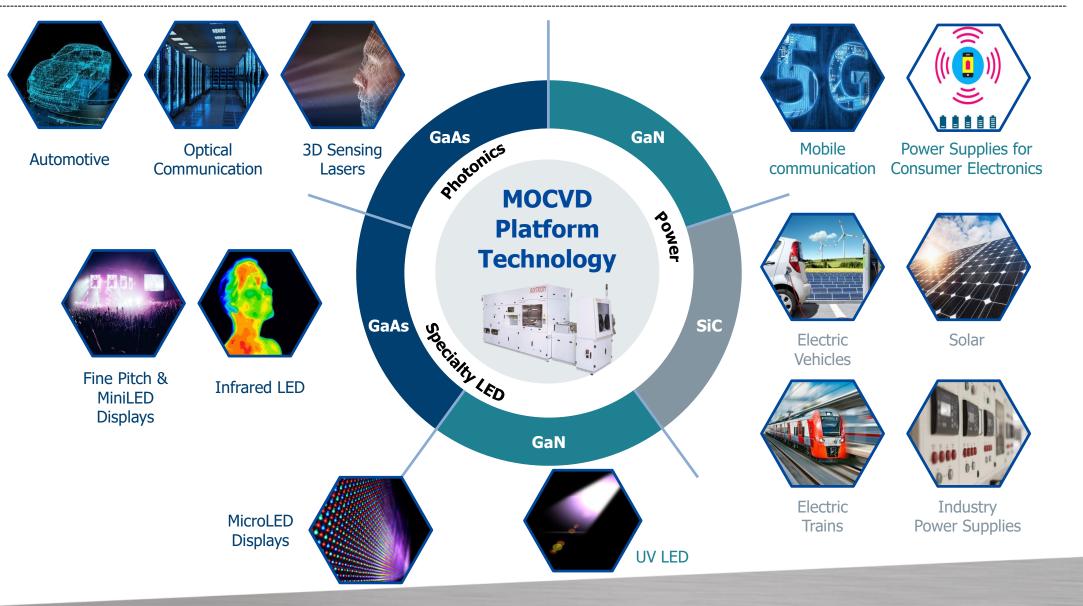
- Increasing adoption of compound semiconductor-based lasers for 3D sensor systems in mobile devices as well as sensors for infrastructure applications.
- Further increasing demand for lasers for ultra-fast optical data transmission of large volumes, such as for video streaming and Internet-of-Things (IoT) applications.
- Increasing use of LEDs and specialty LEDs (esp. red-orange-yellow, UV or IR) in displays, disinfection and other applications.
- Increasing use of wide-band gap GaN- or SiC-based components for energy-efficient power electronics devices in autos, in consumer electronics, in mobile devices and in IT infrastructure.
- Progress in the development of OLED displays that require an efficient deposition technology.


Mid- to Long-Term

- Development of new applications based on wide-band gap materials such as high-frequency chips or system-on-chip architectures with integrated power management.
- Increased use of compound semiconductor-based sensors for autonomous driving.
- Increased development activities for high performance solar cells made of compound semiconductors.
- Development of new materials with the help of carbon nanostructures (carbon nanotubes, -wires and graphene).
- Development of alternative LED applications, such as visual-light communication technology or Micro LED displays.

Micro LED equipment demand as strongest driver from 2021 (Aggressive Model) Power equipment demand to accelerate from 2021

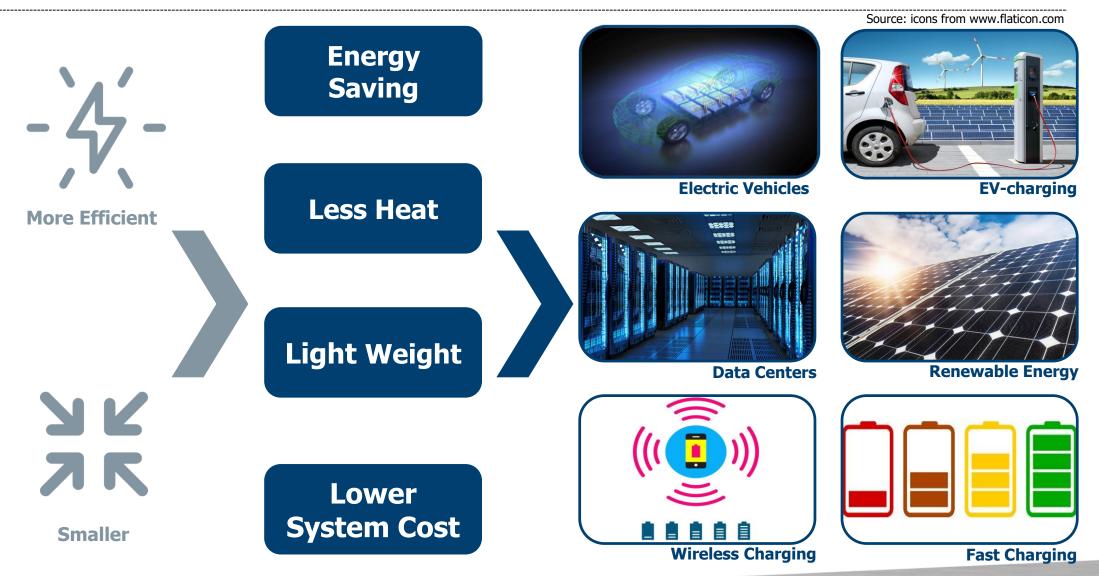
MARKETS



16

* Excluding MBE

AIXTRON – Enabling Emerging Global Mega Trends


AIXTRON MOCVD – Planetary Reactor[®]: Tool-of-Record

- ✓ Individual Wafer Rotation = Best Material Uniformity
- ✓ Individual wafer temperature adjustment = Wafer Level Control/Optimization
- ✓ Highest Epi / Product Yield = Lowest Production Cost

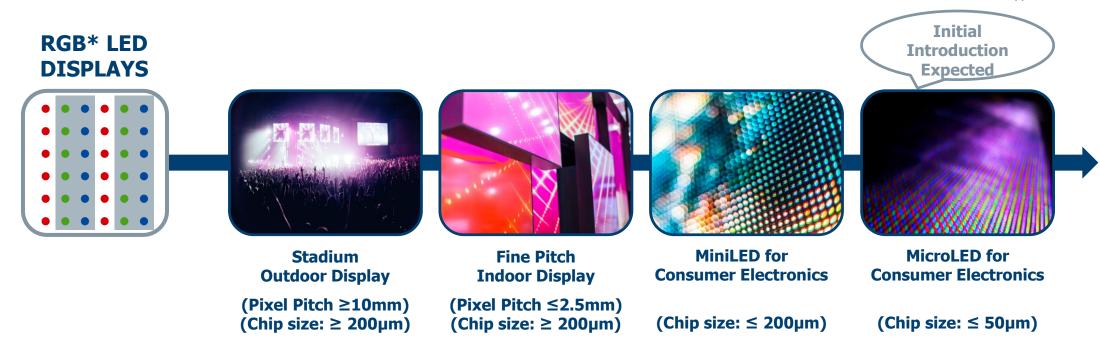
Devices: GaN/SiC Power Electronics – Superior Performance

RIXTRON

Overview: GaN/SiC as Wide Band Gap (WBG) Power Electronics

Consumer Electro	onics & IT	Automotive	Energy	Industrial
Power Ma	anagement		Power Switching	
30V	60	ov	1.2 kV	≥2kV
 Electronic appliances Computing Wireless charging Power supplies PFC 	 Infotainment GPS Connected car Autonomous driving EMI/EMC Adaptive cruise control 	 General automotive electronic HEV/EV Charging station Inverter / motor drives Converter Radar test applications 	 Power Grid / Smart meter / appliances Solar / Wind inverters Solar / Wind power DC distribution storage UPS 	 UPS Industrial machines Building Mining, oil, gas power generation Shipping/Rail
GaN	C	GaN / SiC		SiC
Low to Medium Volt	ages Medium to	o High Voltages		
				RIXTRO

SiC in Automotive : Main Inverter as the Major Market Opportunity


DC-DC Main inverter	OBC	ck charging pole DC (30 – 300 kW)	 Higher efficiency = ✓ Battery size reduction ✓ Cost savings ✓ Range extension
Component	Power (kW)	Fraction 6" wafer*	Comment
Main inverter	20 ~ 150	0.1 ~ 0.5	Brings energy from battery to the electric motor
DC-DC Converter	1 ~ 3	<0.01	Brings energy from battery for car electronics
On Board Charger (OBC)	5 ~ 30	0.01	Brings 240 V AC energy from wall plug to battery
(Quick) Charging Pole	30 ~ 300	0.1 ~ 1	Brings 1–3 kV DC energy directly from grid to battery

* Back-of-the-envelope order-of-magnitude estimates

Devices: ROY LEDs for RGB* Displays; UV LEDs for Niche Markets

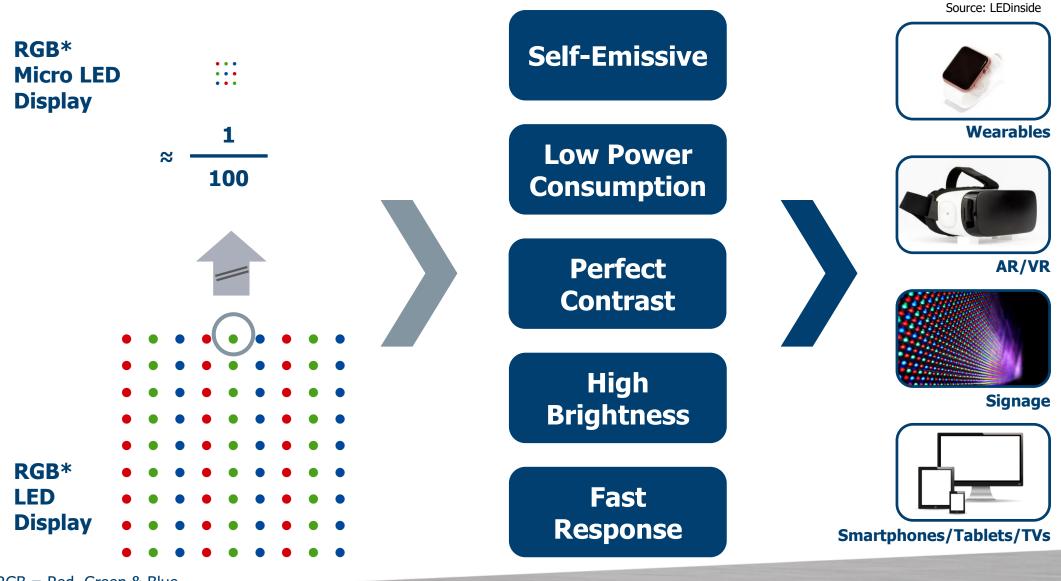
Source: LEDinside, Yole Développement

UV LED

*RGB = Red, Green & Blue

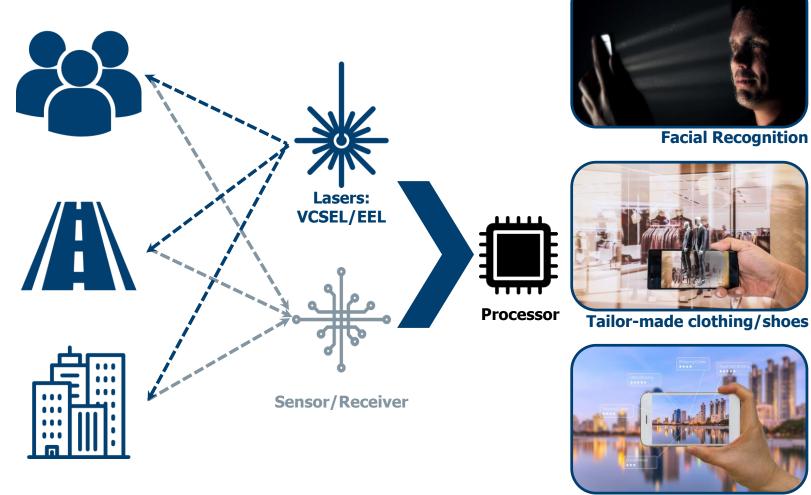
\$

Curing


Water Disinfection

Air Purifier

Devices: Micro LED – The Perfect Future Display Technology



*RGB = Red, Green & Blue

RIXTRON

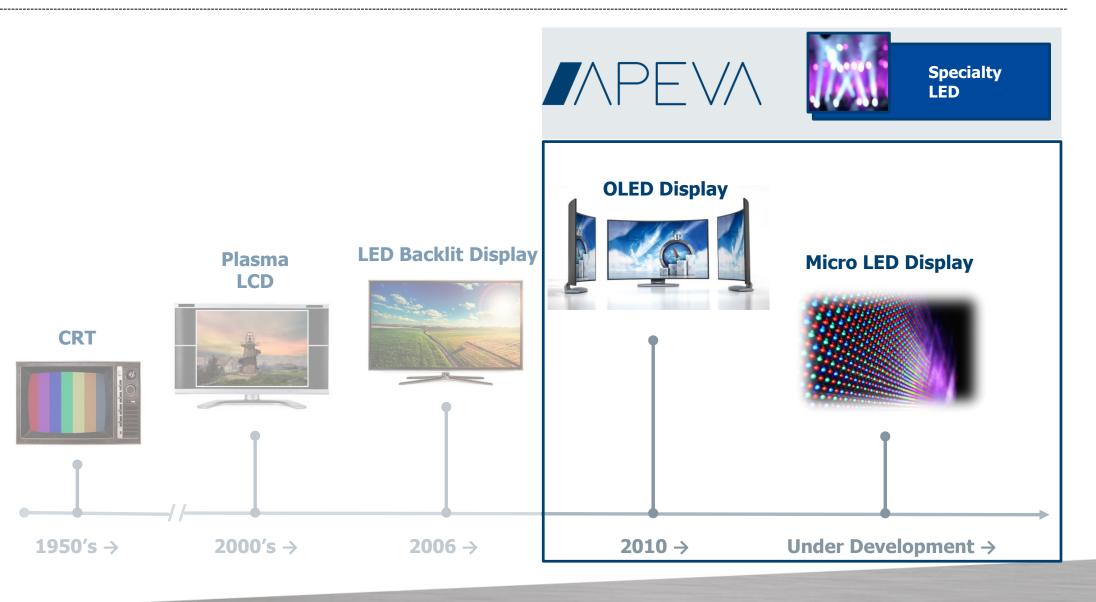
Devices: VCSEL/EEL – Internet of Things Creates New Opportunities

3D Sensing Functionality

Source: icons from www.flaticon.com

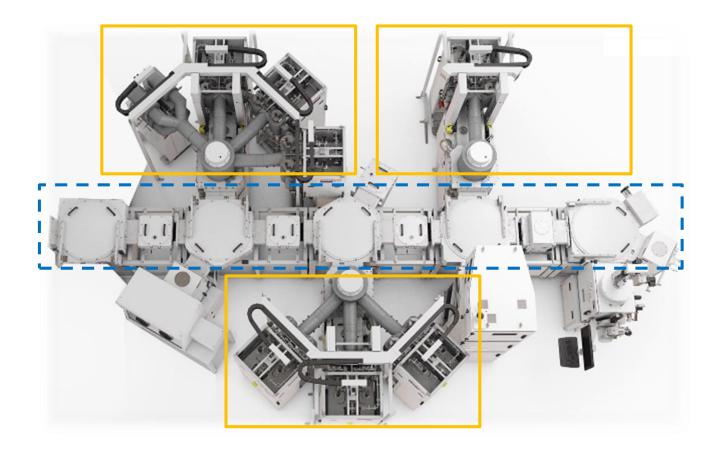
Autonomous Driving

Interior Design


Mapping

Industry 4.0

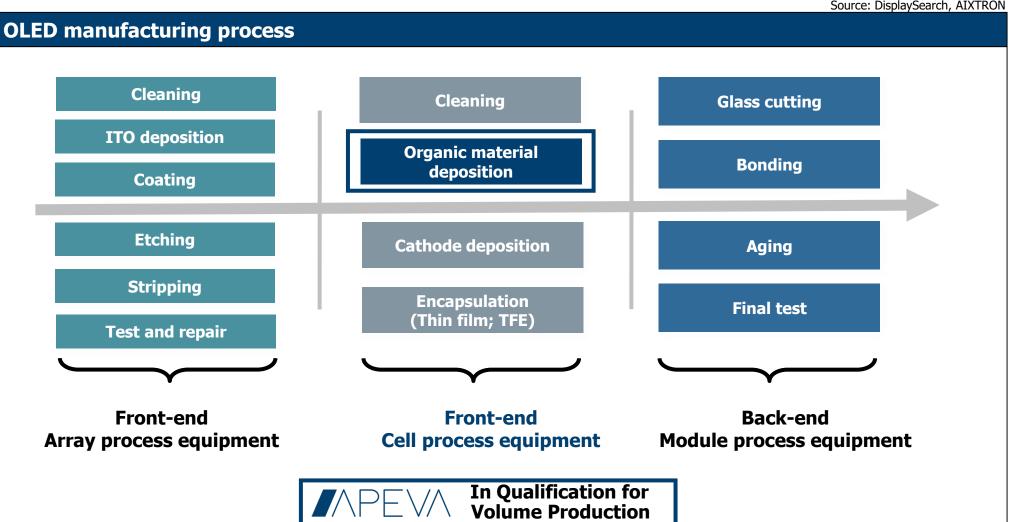
.....


AIXTRON – Instrumental in Evolving Display Technologies

APEVA: OLED Deposition System Provider

OVPD Deposition Line*

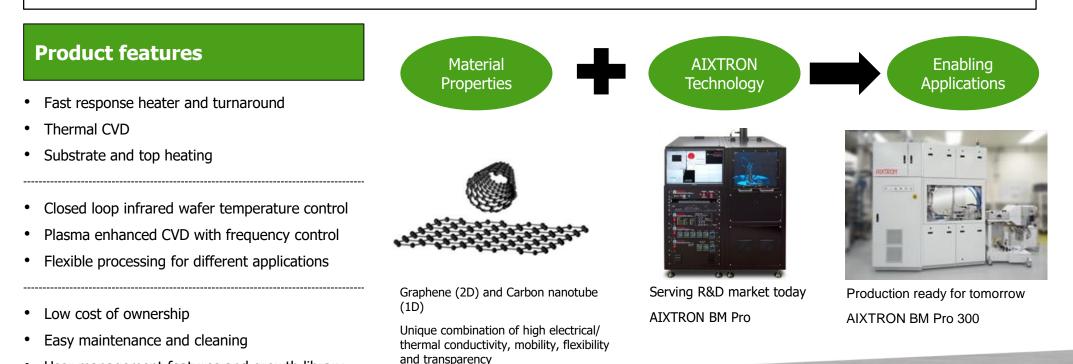
RIXTRON


L _ _ Automation & Handling

- 🔶 H&iruja
- Fully Automated OLED
 Deposition Lines and Fab
 Integration as a Complete
 System Provider
- Innovative Deposition Technology with
 - Higher Efficiency of OLED Material Deposition
 - Mixing and Doping of Materials via Multiple Material Deposition in One Chamber
 - Maintaining the Delicate Organic Material Properties improving Lifetime

* Pictures shown are for illustration purpose only

Organic Electronics – OVPD® – APEVA



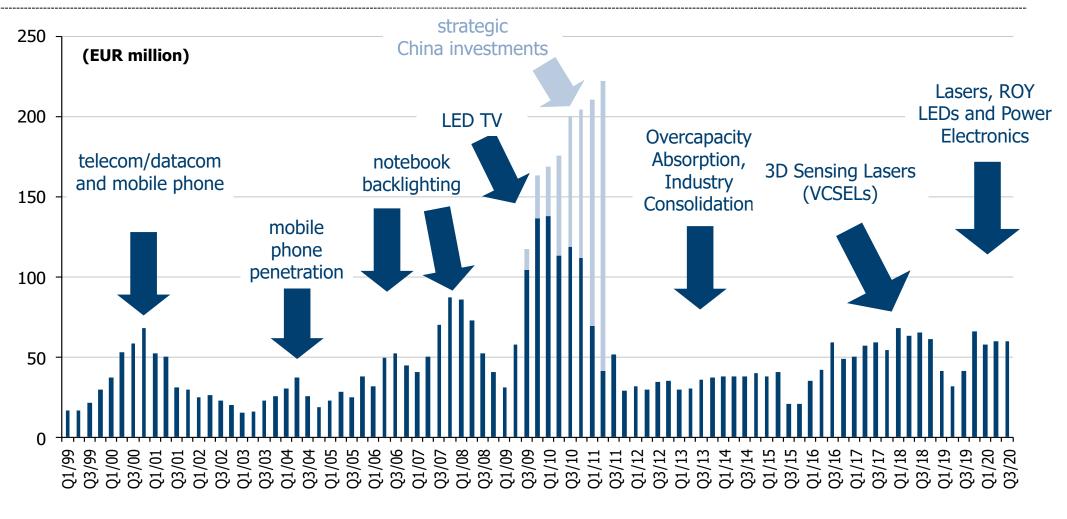
Source: DisplaySearch, AIXTRON

Carbon Nanomaterials – PECVD

Graphene and Carbon Nanotube Deposition Systems

- Proprietary thermal and plasma enhanced chemical vapor deposition technology
- Excellent uniformity and reproducibility with fast turnaround cycle times
- BM platform: BM R&D (2-inch), BM Pro (4-inch and 6-inch), BM GB (4-inch glovebox), BM HT (high temperature, 1,700C), BM300T (300mm)
- Graphene and carbon nanotube films for electronics, energy storage, thermal management, sensors and flexible/transparent applications

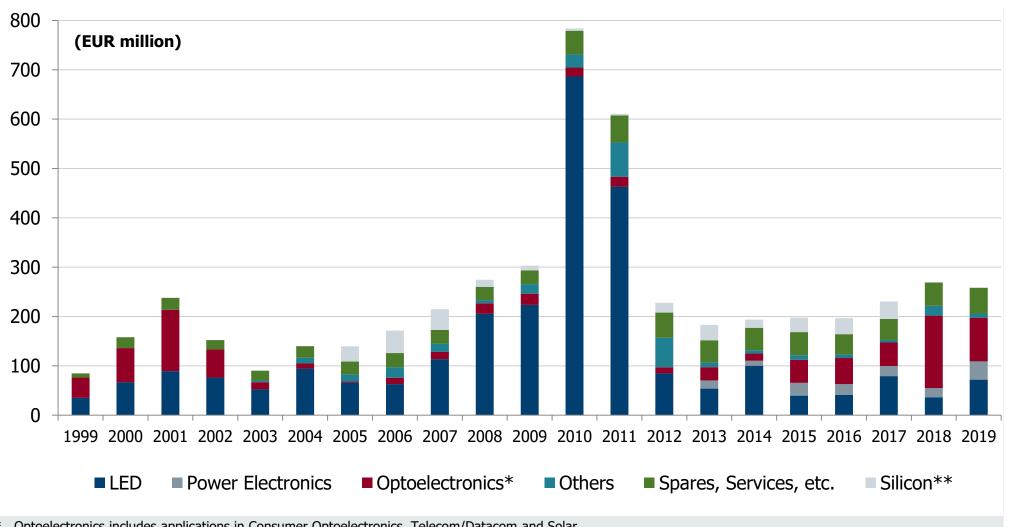
User management features and growth library


RIXTRON

28

Our technology. YOUR FUTURE.

Demand Drivers on Order Intake per Quarter (Equipment Only)



Equipment Demand

Strategic China Investments

RIXTRON

Annual Total Revenues by Application (including After Sales)

* Optoelectronics includes applications in Consumer Optoelectronics, Telecom/Datacom and Solar

** Silicon: ALD/CVD product line sold in 2017

AIXTRON Competitive Landscape

		USA	Europe	China	Korea	Japan
Opto	GaAs/InP Optoelectronics, ROY LED	Veeco				TAIYO NIPPON SANSO The Gas Professionals
	GaN LED	Veeco		CAMEC OF TOPEC		TAIYO NIPPON SANSO The Gas Professionals
Power	GaN Power	Veeco				TAIYO NIPPON SANSO The Gas Professionals
	SiC Power		L PE			TOKYO ELECTRON NUFLORE
OLED		APPLIED MATERIALS.			Your Artistic Solution	CANON TOKKI CORPORATION

Consolidated Income Statement*

* Rounded figures; may not add up

(€ million)	2019	2018	2017
Revenues	259.6	268.8	230.4
Cost of sales	150.9	151.2	156.4
Gross profit	108.7	117.6	74.0
%	42 %	44	32 %
Selling expenses	9.9	9.4	10.2
General & admin expenses	16.5	18.4	17.1
R&D	55.0	52.2	68.8
Net other operating income	11.6	3.8	27.0
EBIT	39.0	41.5	4.9
%	15 %	15 %	2%
Net result	32.5	45.9	6.5
%	13%	17%	3%

33

RIXTRON

FINANCIALS

Balance Sheet*

* Rounded figures; may not add up

(€ million)	21/12/10	21/12/10	21/12/17
	31/12/19	31/12/18	31/12/17
Property, plant & equipment	64.5	63.1	64.3
Goodwill	72.4	71.6	71.2
Other intangible assets	2.4	2.1	1.8
Others	11.7	13.3	4.0
Non-current assets	151.0	150.1	141.3
Inventories	79.0	73.5	43.0
Trade receivables	29.2	40.1	19.3
Others	5.4	11.5	5.0
Cash & Cash Deposits	298.3	263.7	246.5
Current Assets	412.0	388.8	313.8
Equity	464.1	429.7	368.9
Non-current liabilities	4.5	1.8	2.0
Trade payables	19.4	27.8	14.3
Contract liabilities for advance payments	51.1	53.3	30.3
Others	23.9	26.3	39.7
Current liabilities	94.3	107.4	84.2
Balance Sheet total	563.0	538.9	455.1

RIXTRON

Consolidated Statement of Cash Flows*

* Rounded figures; may not add up

(€ million)	2019	2018	2017
Cash Flow from operating activities	42.8	13.0	70.1
Cash Flow from investing activities	-6.8	-16.1	40.7
Cash Flow from financing activities	-1.2	10.4	1.2
Exchange rate changes	-0.1	2.4	-5.5
Net change in Cash & Cash Equivalents	34.6	9.7	106.5
Cash & Cash Equivalents (beginning of period)	236.2	226.5	120.0
Cash & Cash Equivalents (end of period)	270.8	236.2	226.5
Change in Cash deposits	0.0	7.5	-19.5
Free Cash Flow	36.0	4.4	91.4
Сарех	7.8	9.2	9.7

Financial Calendar & Contact Data

- February 25, 2021 FY/2020 Results, Conference Call
- April 29, 2021 Q1/2021 Results, Conference Call
- May 19, 2021 Virtual Annual General Meeting
- July 29, 2021 1H/2021 Results, Conference Call
 - November 04, 2021 9M/2021 Results, Conference Call
- February 24, 2022 FY/2021 Results, Conference Call

For further information please contact:

Investor Relations Phone: +49 (2407) 9030-6153

•

AIXTRON SE Investor Relations & Corporate Communications Dornkaulstr. 2 52134 Herzogenrath Germany E-Mail: <u>invest@aixtron.com</u> **Public Relations** Phone: +49 (2407) 9030-3665

Technology. Materials. Performance.

AIXTRON SE

ł

Dornkaulstr. 2 52134 Herzogenrath Germany Phone +49 (2407) 9030-0 Fax +49 (2407) 9030-40 E-Mail invest@aixtron.com

RIXTRON