

CMD 2018 Presentation 2 (FSE: AIXA, ISIN DE000A0WMPJ6)

RIXTRON

GaN & SiC Power Electronics Market Drivers

GaN & SiC Power Electronics Market Opportunities

Sources: EPC, Wolfspeed

Device

Application

(50V)

- Satellite com, radar
- Telecom basestations
- RF Power Amplifier for 5G
- Industrial heating

(<200V)

- Wireless charging (AirFuel™ standard)
- Powering LiDAR systems
- DC-DC power conversion

(650V)

- Fast chargers for mobile devices
- Compact power supplies
- On-Board Charger EVs

Diode, MOSFET (650, 1.2-3kV)

- Solar Inverter
- On-Board Charger
- Main Power Inverter EVs
- Charging piles

Technology

GaN on Si

SiC on SiC

GaN on SiC

Advantages of SiC Power Electronics Systems

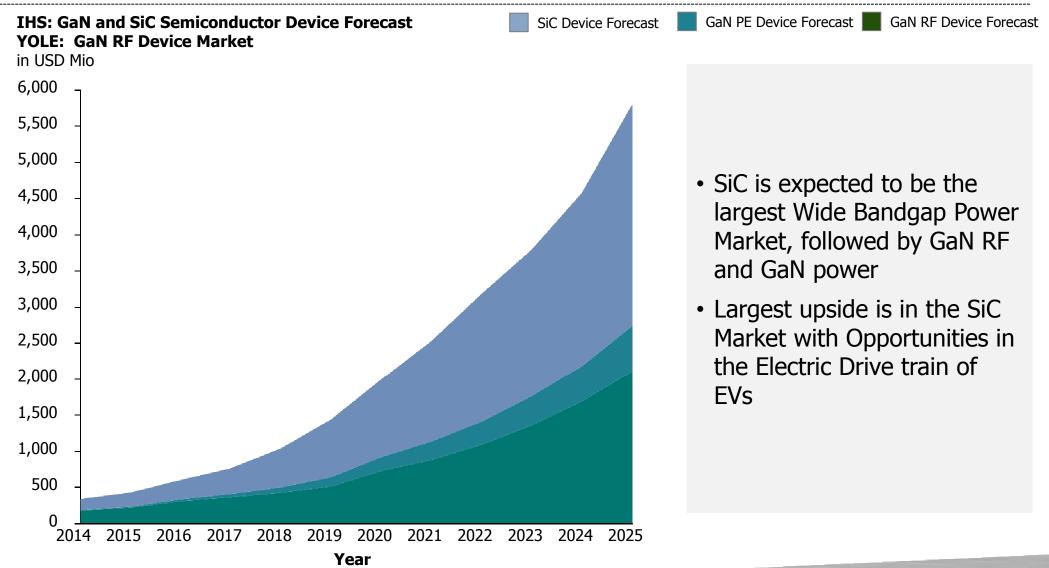
Early adopters: SiC solar inverter & on-board chargers for PHEV and EV


SiC power electronics systems compared to Si:

- > 5x lighter
- > 3x smaller
- > 25% lower semiconductor losses

Next big opportunity: SiC power inverter in electric vehicles (EVs)

SiC Automotive Market Opportunity is based on the Main Inverter as this consumes > 80% of the wafer area


Component	Power (kW)	Fraction 6" wafer	Higher efficiency enables
Main inverter	20 – 150	0,1 - 0,5	Battery size reductionCost savings
DC-DC	1 – 3	<0,01	Range extension
Converter			electronics
On Board Charger (OBC)	5 – 30	0,01	Brings 240 V AC energy from wall plug to battery
(Quick) Charging Pole	30 – 300	0,1 - 1	Brings 1–3 kV DC energy directly from grid to battery

Rough order-ofmagnitude estimates

AIXTRON

GaN and SiC Device Market Forecast – SiC expected to be largest WBG Power Semiconductor Segment by 2025

Source: IHS 2016; YOLE 2017

AIXTRON's (MO)VPE— Key Enabling Technology for GaN & SiC

One Platform, two Material Systems, huge Market Opportunities

GaN

AIX G5+ C The Tool of Record for GaN on Si HVM

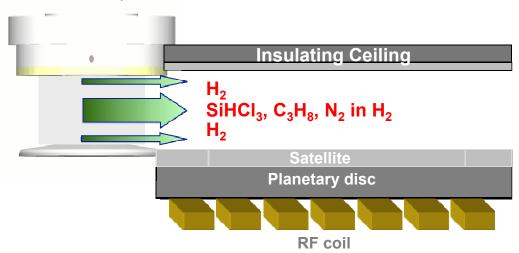
AIX G5 WW

Batch Reactor Productivity with Single Wafer Performance

SiC

The Enabling Solution

- Wide Band-Gap Materials Efficient Power Electronics Applications –
 Multi Billion Dollar Market Opportunity
 - Multi-kW systems require large chip areas
 - Market needs HVM solution with high sensitivity to yield, cost and productivity
- Requirements to (MO)VPE System
 - Best Deposition Uniformity Control at wafer level
 - Lowest Cost per wafer
 - High throughput
 - Low cost of consumables B



AIX G5 WW

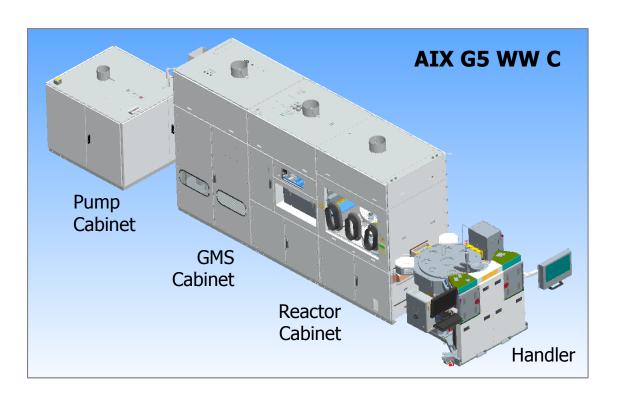
Highest Yields on 150mm – The Planetary Reactor® Principle

Reactor Principle

SiC Epitaxy Requirements

Device class	Drift layer thickness
650V	6 μm
1200V	11 μm
1700V	16 μm
3.3kV	30 μm
6.5kV	60 μm
10kV	100 μm
15kV	150 μm

Different layer thickness for different products


Radial symmetric horizontal Planetary Reactor®

- Individual wafer rotation = best material uniformity
- Individual wafer temperature adjustment = wafer level control/correction
- Laminar flow reactor = wide process window
- High growth rate processes using TCS = high throughput

SiC - New Product with Automation increases Tool Throughput

- > Based on G5 WW 8x150 mm Planetary Reactor®
- > Full Cassette-to-Cassette Wafer Automation (release to beta customers by Q4/18)
- Bay/Chase layout friendly
- > Throughput gain enabled by hot loading/unloading of wafers

GaN — AIXTRON is the Tool-of-Record for 150 & 200 mm

G5+ C dual Planetary reactor module cluster with Cassette-to-Cassette wafer handling

- **Fab integration** with 150 & 200 mm wafer cassette-to-cassette handler module
- Best uniformities thanks to Planetary concept
- In-situ Reactor Cleaning for AlGaN on Si process robustness and yield
- On-wafer temperature process control for highest reproducibility and yield

Development of next-gen product ongoing, timing not disclosed yet

Technology. Materials. Performance.

